Problem-Solving Strategies for continuous charge distributions

Problem-Solving Strategies Summing Electric Fields

We have discussed how electric field can be calculated for both the discrete and continuous charge distributions.

For the former, we apply the superposition principle:

$$\vec{\mathbf{E}} = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q_i}{r_i^2} \hat{\mathbf{r}}_i \ .$$

For the latter, we must evaluate the vector integral

$$\vec{\mathbf{E}} = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r^2} \hat{\mathbf{r}} ,$$

where r is the distance from dq to the field point P and rˆ is the corresponding unit vector. To complete the integration, we shall follow the procedures outlined below:

(1) Start with
$$d\vec{\mathbf{E}} = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} \hat{\mathbf{r}}$$
.

(2) Rewrite the charge element dq as

$$dq = \begin{cases} \lambda \, d\ell & \text{(length)} \\ \sigma \, dA & \text{(area)} \\ \rho \, dV & \text{(volume)} \end{cases}$$

depending on whether the charge is distributed over a length, an area, or a volume.

Problem-Solving Strategies

- (3) Substitute dq into the expression for $d\vec{E}$.
- (4) Specify an appropriate coordinate system (Cartesian, cylindrical or spherical) and express the differential element ($d\ell$, dA, or dV) and r in terms of the coordinates (see Table 2.1 below for summary.)

	Cartesian (x, y, z)	Cylindrical (ρ, ϕ, z)	Spherical (r, θ, ϕ)
dl	dx, dy , dz	$d\rho$, $\rho d\phi$, dz	dr , $r d\theta$, $r \sin \theta d\phi$
dA	dx dy, $dy dz$, $dz dx$	$d\rho dz$, $\rho d\phi dz$, $\rho d\phi d\rho$	$r dr d\theta$, $r \sin \theta dr d\phi$, $r^2 \sin \theta d\theta d\phi$
dV	dx dy dz	$\rho d\rho d\phi dz$	$r^2 \sin\theta dr d\theta d\phi$

- (5) Rewrite $d\vec{\mathbf{E}}$ in terms of the integration variable(s), and apply symmetry argument to identify non-vanishing component(s) of the electric field.
- (6) Complete the integration to obtain $\vec{\mathbf{E}}$.

In the Table below we illustrate how the above methodologies can be utilized to compute the electric field for an infinite line charge, a ring of charge and a uniformly charged disk.

	Line charge	Ring of charge	Uniformly charged disk
Figure	$ \begin{array}{cccc} y \\ \rho \\ y \\ \rho \\ r' \\ x' \end{array} $	$d\vec{\mathbf{E}} \qquad \vec{\mathbf{E}} \qquad d\vec{\mathbf{E}}$ $dq \qquad z \qquad y$ $\phi' \qquad R \qquad dq$	$dq \qquad \frac{z}{\theta}$ $R \qquad \frac{z}{r'} \qquad y$
(2) Express dq in terms of charge density	$dq = \lambda dx'$	$dq = \lambda d\ell$	$dq = \sigma dA$
(3) Write down dE	$dE = k_e \frac{\lambda dx'}{r'^2}$	$dE = k_e \frac{\lambda dl}{r^2}$	$dE = k_e \frac{\sigma dA}{r^2}$

(4) Rewrite <i>r</i> and the differential element in terms of the appropriate coordinates	dx' $\cos \theta = \frac{y}{r'}$ $r' = \sqrt{x'^2 + y^2}$	$d\ell = R d\phi'$ $\cos \theta = \frac{z}{r}$ $r = \sqrt{R^2 + z^2}$	$dA = 2\pi r' dr'$ $\cos \theta = \frac{z}{r}$ $r = \sqrt{r'^2 + z^2}$
(5) Apply symmetry argument to identify non-vanishing component(s) of dE	$dE_y = dE \cos \theta$ $= k_e \frac{\lambda y dx'}{(x'^2 + y^2)^{3/2}}$	$dE_z = dE \cos \theta$ $= k_e \frac{\lambda Rz d\phi'}{(R^2 + z^2)^{3/2}}$	$dE_z = dE \cos \theta$ $= k_e \frac{2\pi\sigma z r' dr'}{(r'^2 + z^2)^{3/2}}$
(6) Integrate to get E	$E_{y} = k_{e} \lambda y \int_{-\ell/2}^{+\ell/2} \frac{dx}{(x^{2} + y^{2})^{3/2}}$ $= \frac{2k_{e} \lambda}{y} \frac{\ell/2}{\sqrt{(\ell/2)^{2} + y^{2}}}$	$(2\pi R\lambda)z$	$E_{z} = 2\pi\sigma k_{e}z \int_{0}^{R} \frac{r'dr'}{(r'^{2} + z^{2})^{3/2}}$ $= 2\pi\sigma k_{e}\left(\frac{z}{ z } - \frac{z}{\sqrt{z^{2} + R^{2}}}\right)$

Problem-Solving Strategies using Gauss' Law

1. Select a Gaussian surface with symmetry that "matches" the charge distribution.

Use symmetry to determine the direction of \vec{E} on the Gaussian surface.

You want \vec{E} to be constant in magnitude and everywhere perpendicular to the surface, so that $\vec{E} \cdot d\vec{A} = E \ dA \ ...$

... or else everywhere parallel to the surface so that $ec{E} \cdot d ec{A} = 0$.

- 2. Evaluate the surface integral (electric flux).
- 3. Determine the charge inside the Gaussian surface.
- 4. Solve for E.

Don't forget that to completely specify a vector, your answer must contain information about its direction.

System	Infinite line of	Infinite plane of	Uniformly charged
	charge	+ + + + + + + + + + + + + + + + + + +	solid sphere
Identify the symmetry	Cylindrical	Planar	Spherical
Determine the direction of $\vec{\mathbf{E}}$	E + + + + + + + + + + + + + + + + + + +	$\vec{\mathbf{E}}$	E
Divide the space into different regions	r > 0	z > 0 and $z < 0$	$r \le a \text{ and } r \ge a$

_	I.	1	
Choose Gaussian surface	\vec{E}_{3} $d\vec{A}_{3}$ \vec{E}_{2} $d\vec{A}_{2}$ $+ + + +$ $d\vec{A}_{1}$ S_{1} S_{2} ℓ Gaussian surface Coaxial cylinder	Gaussian pillbox $\vec{E}_1 \qquad d\vec{A}_1 \qquad \vec{E}_3 \qquad d\vec{A}_3 \qquad d\vec{A}_3 \qquad d\vec{A}_2 \qquad \vec{E}_2$ $\vec{G}_2 \qquad \vec{E}_2 \qquad \vec{G}_3 \qquad \vec{E}_2 \qquad \vec{E}_2 \qquad \vec{E}_2 \qquad \vec{E}_2 \qquad \vec{E}_2 \qquad \vec{E}_3 \qquad \vec{E}_3 \qquad \vec{E}_3 \qquad \vec{E}_3 \qquad \vec{E}_4 \qquad \vec{E}_5 $	Gaussian sphere Concentric sphere
Calculate electric flux	$\Phi_E = E(2\pi rl)$	$\Phi_E = EA + EA = 2EA$	$\Phi_E = E(4\pi r^2)$
Calculate enclosed charge q_{in}	$q_{\rm enc} = \lambda l$	$q_{\rm enc} = \sigma A$	$q_{\text{enc}} = \begin{cases} Q(r/a)^3 & r \le a \\ Q & r \ge a \end{cases}$
Apply Gauss's law $\Phi_E = q_{\rm in} / \mathcal{E}_0$ to find E	$E = \frac{\lambda}{2\pi\varepsilon_0 r}$	$E = \frac{\sigma}{2\varepsilon_0}$	$E = \begin{cases} \frac{Qr}{4\pi\varepsilon_0 a^3}, & r \le a \\ \frac{Q}{4\pi\varepsilon_0 r^2}, & r \ge a \end{cases}$